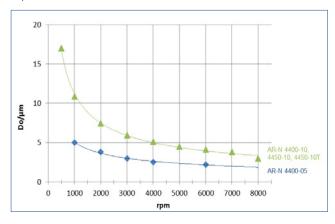


AR-N 4400 Photoresistserie für hohe Schichtdicken

Dicke Negativresists für Galvanik, Mikrosystemtechnik und LIGA ≤ 20 µm

Charakterisierung


- i-, g-line, E-Beam, Breitband-UV
- chemisch verstärkt, sehr gute Haftung, galvanostabil
- sehr hohe Empfindlichkeit, leicht entfernbar
- Profile hoher Kantensteilheit für exzellente Auflösung, Abdeckung von Topologien
- 4400-05/-10 für Schichten bis 10 μm/20 μm (250 rpm)
- 4450-10T für Schichtdicken bis 20 μm und lift-off
- Novolak, Vernetzer und aminischer Säuregenerator
- safer solvent PGMEA

Eigenschaften I

Parameter / AR-N	4400-05	4400-10
Feststoffgehalt (%)	33	45
Schichtdicke/1000 rpm (µm)	5	10
Auflösung (µm)	1,0	2,0
Kontrast	4,0	4,0
Flammpunkt (°C) 42		<u> </u>
Lagertemperatur (°C)*	10 - 18	

^{*} Die Produkte sind 6 Monate ab Verkaufsdatum bei vorschriftsmäßiger Lagerung garantiert haltbar und darüber hinaus ohne Gewähr bis Etikettendatum verwendbar.

Spinkurve

Eigenschaften II

Glas-Temperatur °C	102		
Dielektrizitätskonstante	3,1		
Cauchy-Koeffizienten	N ₀	1,615	
	N ₁	77,6	
	N ₂	64,1	
Plasmaätzraten (nm/min)	Ar-sputtern	3	
(5 Pa, 240-250 V Bias)	02	122	
(0 + 3, 2 + 0 = 0 + 1 = 1314)	CF ₄	31	
	80 CF ₄	81	
	+ 16 02		

Strukturauflösung

AR-N 4400-10 3 µm Auflösung bei einer Schichtdicke von 15 µm

Resiststrukturen

Turbinenrad aus dem AR-N 4400-10

Prozessparameter

Substrat	Si 4" Wafer
Temperung	95 °C, 10 min, hot plate
Belichtung	Maskaligner MJB 3, Kontaktbelichtung
Entwicklung	AR 300-47, pur, 3 min, 22 °C

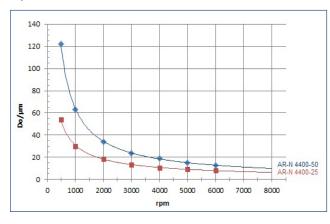
Prozesschemikalien

Haftvermittler	AR 300-80 neu
Entwickler	AR 300-47, AR 300-44
Verdünner	AR 300-12
Remover	AR 600-71

AR-N 4400 Photoresistserie für hohe Schichtdicken

Sehr dicke Negativresists für Galvanik, Mikrosystemtechnik und LIGA ≥ 50 µm

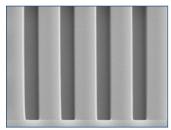
Charakterisierung


- i-, g-line, E-Beam, Breitband-UV
- chemisch verstärkt, sehr gute Haftung, galvanostabil
- sehr hohe Empfindlichkeit, leicht entfernbar
- Profile hoher Kantensteilheit für exzellente Auflösung, Abdeckung von Topologien
- 4400-25 für hohe Schichten bis 50 μm (250 rpm)
- 4400-50 für höchste Schichtdicken bis $100~\mu m$
- Novolak, Vernetzer und aminischer Säuregenerator
- safer solvent PGMEA

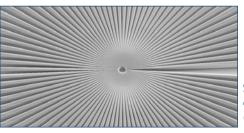
Eigenschaften I

Parameter / AR-N	4400-25	4400-50
Feststoffgehalt (%)	52	58
Schichtdicke/1000 rpm (µm)	25	50
Auflösung (µm)	3,5	5,0
Kontrast	trast 5,0 6,0	
Flammpunkt (°C)	42	
Lagertemperatur (°C)*	10 - 18	

^{*} Die Produkte sind 6 Monate ab Verkaufsdatum bei vorschriftsmäßiger Lagerung garantiert haltbar und darüber hinaus ohne Gewähr bis Etikettendatum verwendbar.


Spinkurve

Eigenschaften II


	T	_
Glas-Temperatur °C	102	
Dielektrizitätskonstante	3,	1
Cauchy-Koeffizienten	N_0	1,615
	N ₁	77,6
	N_2	64,1
Plasmaätzraten (nm/min)	Ar-sputtern	3
(5 Pa, 240-250 V Bias)	02	122
	CF ₄	31
	80 CF ₄	81
	+ 16 02	

Strukturauflösung

AR-N 4400-25 5-µm-Gräben bei einer Schichtdicke von 40 µm

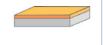
Resiststrukturer

Siemensstern mit dem AR-N 4400-25 (30 µm dick)

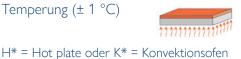
Prozessparameter

Substrat	Si 4" Wafer
Temperung	95 °C, 10 min, hot plate
Belichtung	Maskaligner 150
Entwicklung	AR 300-44, pur, 90 min, 22 °C

Prozesschemikalien


Haftvermittler	AR 300-80 neu
Entwickler	AR 300-46, AR 300-44
Verdünner	AR 300-12
Remover	AR 600-71

Prozessbedingungen


Dieses Schema zeigt ein Prozessierungsbeispiel für die Resists AR-N 4400. Die Angaben sind Richtwerte, die auf die eigenen spezifischen Bedingungen angepasst werden müssen. Weitere Angaben zur Prozessierung ~ "Detaillierte Hinweise zur optimalen Verarbeitung von Photoresists". Empfehlungen zur Abwasserbehandlung und allgemeine Sicherheitshinweise 🤝 "Allgemeine Produktinformationen zu Allresist-Photoresists".

Beschichtung
(offener Chuck)

4400-05	4400-10	4400-25	4400-50
1000 rpm	1000 rpm	1000 rpm	1000 rpm
5 µm	10 µm	25 µm	50 µm

Temperung (± 1 °C)

H*	90 °C 4 min	90 °C 15 min	90 °C 45 min	90 °C 90 min
K*	85 °C	85 °C	85 °C	85 °C
	30 min	60 min	4 h	7 h

UV-Belichtung

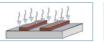
Maskaligner, UV Breitband				
Belichtungsdosis (E ₀ , BB-UV):				
	22 mJ/cm ²	26 mJ/cm ²	33 mJ/cm ²	52 mJ/cm ²

Vernetzungstemperung (± 1 °C)

H*	100 °C 5 min	100 °C 10 min	100 °C 10 min	100 °C 10 min
K*	95 °C 30 min	95 °C 40 min	95 °C 60 min	95 °C 80 min

H* = Hot plate oder K* = Konvektionsofen Entwicklung

(21-23 °C ± 0,5 °C) Puddle



300-47	300-47	300-46	300-44	
1 min	4 min	9 min	18 min	
DI-H ₂ O, 30 s und vorsichtig trocknen				

Härtung der Strukturen bis 300 °C (optional)

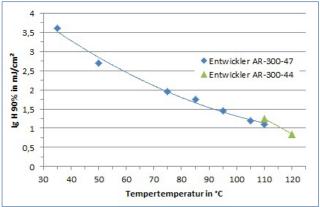
Flutbelichtung 100 mJ/cm²; Bake 120 °C, 5 min hot plate

Kundenspezifische Technologien

Erzeugung der Halbleitereigenschaften und Galvanik, MEMS

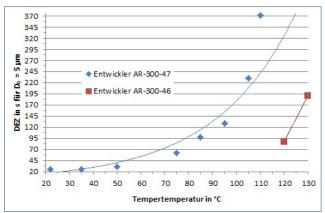
Removing

Spülen

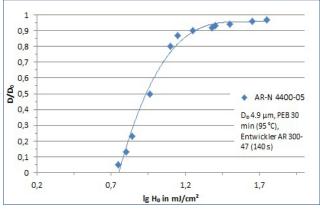

AR 300-76 einfach vernetzt; AR 600-71 intensiv vernetzt, O2-Plasmaveraschung ist auch bei hohen Schichtdicken möglich.

Entwicklungsempfehlungen

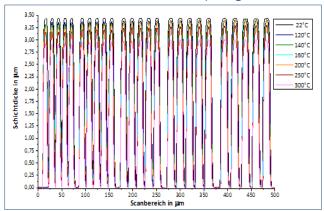
Resist / Entwickler	AR-N 4400-05 3 - 10 µm	AR-N 4400-10 5 - 20 μm	AR-N 4400-25 13-25 µm	AR-N 4400-50 25-100 μm		
AR 300-44	-	-	-	8 : 1 bis pur		
AR 300-46	-	-	5 : 1 bis pur	pur		
AR 300-47	6 : 1 bis pur	3 : 2 bis pur	pur	-		
AR 300-475	pur	-	-	-		



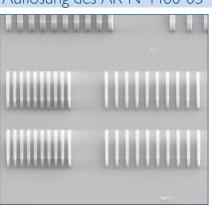
Empfindlichkeit des AR-N 4400-05


Die Empfindlichkeit nimmt gleichmäßig mit steigender Bake-Temperatur zu (BB-UV-Maskeliner, Schichtdicke 5,0 μ m).

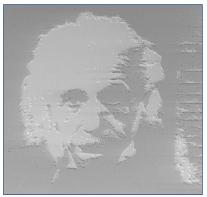
Durchentwicklungszeiten des AR-N 4400-05


Mit steigender Temperatur nimmt die DEZ sehr stark zu, > 130 °C ist eine Entwicklung trotz starker Entwickler (AR 300-44) nicht mehr möglich.

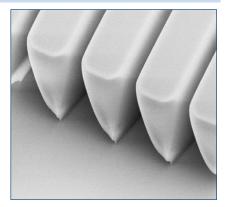
Gradationskurve des AR-N 4400-05


Die Gradation (Kontrast) beträgt 3,5, die Empfindlichkeit wurde für einen 90 % igen Schichtaufbau (H_090) mit 21,5 mJ/cm² bestimmt.

Thermostabilität und Schrumpfung bis 300 °C


Entwickelte Linien von 10-20 µm Breite wurden mittels Flutbelichtung und folgendem Bake gehärtet. Diese Stege wurden schrittweise bis 300 °C getempert. Bis 200 °C bleiben die Strukturen praktisch unverändert.

Auflösung des AR-N 4400-05


Bei einer Schichtdicke von 5 μm wurden 1,0 μm breite Stege erzeugt

Bildnis von Albert Einstein

Anlässlich des Einsteinjahrs 2006 wurde diese Teststruktur mit dem CAR 44 erzeugt

Lift-off-Strukturen

Durch eine niedrige Dosis erzeugter Unterschnitt (AR-N 4450-10T)

Verarbeitungshinweise für den Umgang mit dicken Schichten

<u>Beschichtung:</u> Zur Bläschenvermeidung sollte der Resist mindestens einen Tag vor der Verarbeitung ruhen, für höherviskose Resists ab AR-N 4400-25 ist ein Entgasen mit Ultraschall oder Vakuum sinnvoll.

Der Resistauftrag soll langsam, aus geringer Höhe und immer mit der gleicher Resistmenge (z.B. 10 ml für 4-Zoll-Wafer) auf den stehenden Wafer erfolgen. Dann wird eine Formierung für 10 s bei langsamer Drehzahl (250 – 400 rpm) empfohlen. Anschließend sollte die Drehzahl langsam auf die gewünschte Endgeschwindigkeit erhöht werden. Für eine gute Schichtqualität beim hochviskosen AR-N 4400-50 sollten Drehzahlen über 2000 rpm vermieden werden.

→ Mit kürzerer Beschichtungsdauer bei der Endgeschwindigkeit erhöht sich die Schichtdicke.

Mehrfachbeschichtungen sind bis zu 4x möglich für den Schichtdickenbereich von 50-150 μm . Eine besondere Kantensteilheit der Strukturen ergibt sich dabei durch die bessere Durchtrocknung. Nach jeder Beschichtung erfolgt eine Trocknung bei 85 °C (hot plate) bzw. 90 °C (Konvektionsofen) entsprechend den Angaben im Prozessschema.

<u>Temperung:</u> Die erforderlichen Trocknungen sind sehr schichtdickenabhängig:

Trocknungsdauer hotplate/ Konvektionsofen:

 $10 \, \mu m$: $10 \, min/1 \, h$, $25 \, \mu m$: $45 \, min/4 \, h$, $50 \, \mu m$: $90 \, min/7 \, h$. Der Einsatz von Temperaturrampen wird empfohlen, da ein zu schnelles Abkühlen zu Spannungsrissen führen kann.

<u>Vernetzung:</u> Die Vernetzungstemperatur kann im Bereich von 85 °C bis 105 °C variiert werden, sie kann auch ohne Empfindlichkeitsverlust erst einige Tage nach der Bestrahlung erfolgen.

→ Höhere Temperaturen führen zu einer langsameren Entwicklung.

Entwicklung: längere Entwicklungszeiten mit einem schwächeren Entwickler ergeben eine bessere Abbildungsgüte.

Removing: Die vernetzten Strukturen sind nass- oder plasmachemisch leicht entfernbar mit den Removern AR 600-71 und AR 300-76. Kompliziert galvanische Abformungen sowie thermisch behandelte Schichten erfordern den Remover AR 600-71.

Vergleich CAR 44 und SU-8

CAR 44	Resisteigenschaften - Eignung	SU-8
✓	Hohe Schichtdicken	√ √
✓	Hohe Auflösung	✓
✓	Ausgezeichnetes Aspektverhältnis	✓
✓	Hohe Empfindlichkeit bei i-line, Tief-UV, E-Beam	√√
✓	Gute Empfindlichkeit bei g-line	×
✓	Stressarme Temperung - einfaches Handling	×
✓	Wässrig-alkalische Entwicklung	×
✓	Leichte Entfernbarkeit	×